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a b s t r a c t

The application of a multi-block statistical analysis method, known as Common Components and Specific
Weight Analysis, to the determination of connections between sensory descriptors and analytical data
for Hunter Valley Semillon is described. Sixteen wines were used in the data analysis with 15 sensory
descriptors and 10 analytical measurements available for each wine. The multi-block analysis simpli-
fies the comparison between the data sets and allows relationships between the sensory and analytical
parameters to be readily ascertained, more effectively than a linear regression approach. A sweetness zone
established the connections between several sensory descriptors and analytical measurements based on
hemical analysis
hemometrics
ine

unter Valley Semillon

fructose. Glucose was not part of the sweetness connections, although glycerol was connected to the sen-
sory sweetness descriptors. Sensory assessment of acidity was positively related to the titratable acidity
and pH was negatively related. The malic acid concentration was also negatively related to sensory acid-
ity and the possible reasons for this are described. Several sensory descriptors including toast, honey
and kerosene were found to be in opposition to the sweetness sensory parameters and not connected to
any analytical parameters. The outcomes of this multi-block treatment indicate the potential for using
analytical measurements as a surrogate for sensory analysis.
. Introduction

Sensory analysis involves the application of human senses to the
escription and/or evaluation of a product for consumer use. Rig-
rous sensory analysis involves a panel of assessors that have been
rained for a specific evaluation. For example, the determination of
escriptors to characterise a wine style or to assess the impact of
processing step on the wine style is now a routine practice. Each

eparate sensory exercise, however, requires an intensive training
rogram for the assessors.

A full sensory analysis, particularly descriptive, texture and
ime-intensity analyses, are complex processes demanding consid-
rable time with an associated high cost. A proper sensory analysis

f a food or beverage, including wine, can take at least 3 months
nd possibly 6 months of training and application. Extensive train-
ng is necessary to ensure consistency in and between assessors.
he time period demands commitment from panel members and
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this in turn implies a high cost of the operation [1]. The time and
cost factors restrict the extent to which full sensory analysis can be
routinely applied.

The generation of analytical measurements for a range of quality
parameters related to aroma, flavour and texture is faster, gener-
ally less expensive and more objective than sensory analysis. That
is analytical measurements, when properly collected, do not suffer
from bias due to personal preference [2]. The application of chemo-
metrics to the interpretation of analytical data has opened up many
interesting possibilities in food and beverage studies, particularly
with respect to process monitoring, determination of geographical
origin, authentication, adulteration and substitution [3–6].

The possibility of using analytical data as a surrogate for sensory
data is less well examined, although Lesschaeve [personal com-
munication] argues that this has been a sought after goal in many
studies over the last 20 or more years. This position is supported by
Piggott [7], who argues that flavour cannot be measured directly
by instruments. That is only individual chemical compounds can

be measured quantitatively by instrumental analysis and not the
interactions between them that give rise to flavour.

While there have been several studies examining the link
between sensory properties and aroma compounds, the main focus
has tended to be on validation of the product type or characterising

http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:scollary@unimelb.edu.au
mailto:gscollary@optusnet.com.au
dx.doi.org/10.1016/j.aca.2009.10.062
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ts origin. For example, there have been studies examining the link
etween sensory properties and non-volatile and volatile parame-
ers on dry-cured ham [8], drinking water [9], balsamic vinegar [10],
roiler chicken cuts [11] and netted muskmelon [12]. Bakker and
rnold [13] have described the positive relationship between sen-
ory perception and chemical data for colour in port wines, while
ennedy et al. have examined the relationship between several
ethods of tannin analysis in red wines and perceived astringency

14]. Neural networks have been applied to modelling the sensory
haracteristics in Scotch whiskey [2] and beer [15]. The potential of
nstrumental texture measurements as a substitute for the sensory
ssessment of grape berry ripening properties has been evaluated
16].

A predictive model for the characterisation of the aromas in
offee based on the correlation between descriptive sensory pro-
ling and analytical measurement obtained by proton transfer
eaction-mass spectrometry [17] opens up new possibilities for
sing chemical analysis as a surrogate for sensory analysis. Prin-
ipal Component Analysis was used in this coffee study. The recent
dvances in chemometric methods for the interpretation of multi-
lock data have provided new methodologies for data treatment
18]. Multi-block methods facilitate the comparison of different
locks of variables describing the same samples, highlighting sim-

larities and differences among the blocks and also among the
ariables within each block. The present study investigates the
otential of using a multi-block technique known as Common Com-
onents and Specific Weight Analysis [19] to the comparison of
ensory descriptors and chemical analysis of a white wine. Semil-
on wine from the Hunter Valley, Australia, was chosen for this
tudy. This wine is characterised for its low alcohol concentration
about 10%, v/v), high acidity (pH 3.2 or less), low residual sugar
nd capacity for ageing [20,21].

. Experimental

.1. Wine samples
Sixteen Semillon wines from the Hunter Valley, Australia, were
rovided by wine companies supporting a major study entitled

Matching Semillon characteristics to consumer expectations’. All
ines were in bottle and opened only for sensory and chemical

nalysis. The selected wines spanned 10 vintages.

able 1
nalytical parameters for the 16 Semillon wines. Values are in g L−1, except alcohol (%, v/

Analysis code

A1 A2 A3 A4 A5
Glucose Fructose Total (G + F)a Sugar sweetness

responseb
Tit
aci

Wine code
A 0.61 5.93 6.54 14.74 6.7
B 0.32 0.31 0.63 1.06 6.5
C ND 0.08 0.08 0.19 7.7
D 0.13 ND 0.13 0.13 6.3
E 0.16 0.27 0.43 0.80 8.2
F 0.24 2.04 2.28 5.10 7.5
G 0.93 0.97 1.9 3.24 7.3
H 0.43 0.78 1.21 2.29 6.2
1 0.23 3.39 3.62 8.30 6.9
J 0.49 3.48 3.97 8.78 7.6
K 1.49 1.73 3.22 5.61 7.1
L 0.13 1.25 1.38 3.11 6.8
M 0.17 0.03 0.2 0.24 7.5
N 1.41 1.56 2.97 5.13 7.7
O 0.05 0.16 0.21 0.43 6.5
P 1.55 2.11 3.66 6.58 6.9

a Total G + F, sum of the glucose (G) and fructose (F) concentration.
b Sugar sweetness response; see text for details of calculation.
mica Acta 660 (2010) 2–7 3

2.2. Chemical analysis

Table 1 contains the analytical parameters for the 16 Semillon
wines. Glucose and fructose concentrations were determined using
a d-glucose/d-fructose enzymatic kit from Boehringer (Mannheim,
Germany). The total glucose plus fructose concentration (Total
(G + F) in Table 1) was obtained by summing the individual
values, while the sugar sweetness response was calculated as (glu-
cose + 2.382 fructose) concentration to allow for the enhanced
sweetness of fructose with respect to glucose and to allow for its
earlier perception [22]. Malic acid was determined enzymatically
using a l-malic acid kit from Boehringer (Mannheim, Germany).
Glycerol was also determined enzymatically using a Megazyme
K-GCROL kit (Megazyme International Ireland Ltd.). The pH and
titratable acidity (TA) were assessed using a Cyberscan 510 pH
meter, with the TA being determined by titration to pH 8.2 with
sodium hydroxide and quoted as gram tartaric acid equivalents per
litre. The volatile acidity was determined using a Foss WinescanTM

analyser. An Anton Parr Alcolyser DMA 450 density meter was used
to determine the alcohol concentration.

2.3. Sensory analysis

The sensory descriptors were determined by a panel composed
of six females and nine males aged 21–45 years. An exhaustive
list of descriptors was gradually refined during a 9-week period
in May–July 2007 such that 15 common descriptors were included
in the final testing. The inclusion criteria followed the international
standard ISO 11035:94 [23], where consideration was given to the
relevance to Hunter Valley Semillon, the discrimination between
samples afforded and the panel’s ability to detect and easily recog-
nise each descriptor.

The descriptors, acidity and sweetness, could be considered to
be taste parameters, while the remaining 13 descriptors charac-
terise the aroma profile. Table 2 (taken from [24]) summarises the
sensory data used in this analysis.
2.4. Data analysis

Simple linear regressions and multiple linear regressions were
performed on the sensory and analytical parameters using Statis-
tica 7.1 (StatSoft, Inc., 2005).

v).

A6 A7 A8 A9 A10
ratable
dity

pH Alcohol Malic
acid

Volatile
acidity

Glycerol

3.25 10.48 2.3 0.2 4.96
3.15 10.32 1.7 0.3 3.97
2.84 10.64 1.4 0.2 3.94
3.09 10.43 3.2 0.3 4.93
2.92 11.33 1.7 0.3 5.11
2.89 10.37 1.7 0.2 4.08
3.05 10.71 2.7 0.2 5.49
3.09 10.50 2.6 0.3 4.45
2.93 10.68 1.9 0.2 5.88
2.89 10.09 1.6 0.1 4.04
3.16 11.37 2.9 0.2 4.86
3.08 11.87 1.5 0.2 5.91
2.89 10.12 1.3 0.1 3.99
3.09 10.13 2.5 0.3 3.77
3.24 11.57 2.3 0.2 4.01
2.97 10.64 2.4 0.3 4.50
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Fig. 1. Correlations between all pairs of sensory and analytical parameters.

The Common Components and Specific Weight Analysis multi-
block approach, abbreviated as ComDim, was also applied to relate
the sensory and analytical data. Qannari et al. [19] have described
the statistical definition and interpretation of ‘common dimen-
sions’ as well as demonstrating mathematically the equivalences
and difference among several multi-block methods. The theory of
ComDim multi-block analysis method is described in Scheme S1
(Supplementary Data). To avoid giving too much weight to vari-
ables with large values or large variability in the analysis used here,
all data were column-centred and standardised, that is subtracting
each column’s mean and then dividing each column by its standard
deviation.

3. Results and discussion

The correlations among all the analytical variables (columns and
rows 1–10) and sensory variables (11–25) are presented graphi-
cally in Fig. 1 (see also Supplementary Fig. S1) where it is clear that
the positive and negative correlations are much stronger within
the sensory variables block than between the analytical and the
sensory variables blocks. Supplementary Figs. S2–S4 show the cor-
relations between all pairs of analytical parameters, all pairs of
sensory parameters and sensory and analytical parameters respec-
tively.

The initial statistical analysis used simple linear regressions
to determine if there were any potentially significant correla-
tions between the sensory and analytical data that would suggest
that there may be value in a more detailed analysis. Table 3 and
also Fig. S4 present a summary of the correlations found by this
approach.

The sensory SWEETNESS (S15) score is clearly significantly cor-
related with the analytical measures of residual sugar, that is with
the total glucose plus fructose concentration (Total (G + F), Table 1)
and the sugar sweetness response, the total sugar concentration
adjusted for the enhanced sweetness of fructose (A2, A3, A4). Sim-
ilarly, CONFECTIONARY (S13), a sensory descriptor also related to
sweetness shows a positive correlation with the total residual sugar
concentration, although not as strong as with the SWEETNESS score
(Table 3).
The sensory score for ACIDITY (S14) is significantly correlated
with titratable acidity (A5, Table 1) and shows significant, but neg-
ative, correlations with malic acid (A8) and pH (A6). Although a
strong negative link between pH and sensory assessment of acidity
is logical, it is somewhat unexpected here, given the narrow range
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Table 3
Correlation parameters for linear regression analysis between sensory scores and analytical data. Data analysis performed using Statistica 7.1 (StatSoft, Inc., 2005).

Sensory descriptor Analytical parametera Correlation, r Probability Standard error of estimate

SWEETNESS Total (G + F) 0.756 0.0007 0.423
SWEETNESS Sugar sweetness response 0.746 0.0009 0.430
CONFECTIONARY Total (G + F) 0.594 0.0152 0.632
CONFECTIONARY Sugar sweetness response 0.611 0.0120 0.623
ACIDITY pH −0.829 0.00007 0.265
ACIDITY TA 0.563 0.0231 0.392
ACIDITY Malic acid −0.511 0.0430 0.395
FLORAL Total (G + F) 0.561 0.0239 0.297
FLORAL Sugar sweetness response 0.551 0.0271 0.792
FLORAL Glycerol 0.536 0.0322 0.800
LEMON/LIME Glycerol 0.553 0.0264 0.491
PINEAPPLE Glycerol 0.553 0.0263 0.491
GRASSY Glycerol 0.506 0.0453 0.417
ASPARAGUS pH 0.572 0.0206 0.191
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monality with the sensory acidity attribute is to be expected. The
second Acidity zone in the negative CD2 direction contains only the
analytical parameters of pH (A6) and malic acid (A8). The place-
ment of pH opposed to sensory acidity is also as expected, given
ASPARAGUS Malic acid
ORANGE MARMALADE Volatile acidity

a Total G + F, sum of the glucose (G) and fructose (F) concentration; sugar sweetn

f pH values of these wines, from pH 2.84 to pH 3.16 (Table 1). The
alic acid correlation is discussed in more detail below.
Intriguingly, positive and significant correlations were also

ound between some analytical measurements and aroma sensory
cores (Table 3). For example, FLORAL sensory score (S2) is posi-
ively correlated with fructose (A2), the total residual sugar score
A3) and sugar sweetness response (A4) as well as with the glyc-
rol concentration (A10). Glycerol also showed a relationship with
EMON/LIME, FLORAL, PINEAPPLE (S1–S4) and GRASSY (S9). There
as a positive correlation between ASPARAGUS (S10) with pH (A6)

nd malic acid (A8) as well as between ORANGE MARMALADE (S6)
nd volatile acidity (A9), a reflection of acetic acid in the main.

This initial linear regression analysis implied that the potential
or developing a model that used analytical data as a surrogate for
ensory descriptors might be achievable. Several of the sweetness
nd acidity correlations are very significant when the probabil-
ty values and standard errors (Table 3) are considered. Several
f the other correlations in Table 3 are also moderately strong,
mplying that there may be a real relationship. This suggested that
n in-depth analysis of the relation among sensory and analyti-
al parameters using the more sophisticated multi-block ComDim
nalysis would be of value.

Several relations of proximity and opposition can be seen in
he projection of the sensory and analytical parameters onto the
D1–CD2 plot (Fig. 2). It is clear that there are several regions
f related descriptors in the CD1–CD2 plot. The region labelled
weetness represents the commonality between the mouthfeel sen-
ory parameter of SWEETNESS (S15), the aroma parameters of
EMON/LIME (S1), FLORAL (S2), GRAPEFRUIT (S3), PINEAPPLE (S4),
RASSY (S9), LYCHEE (S11) and CONFECTIONARY (S15) and the
nalytical parameters of fructose (A2) and glycerol (A10) and the
alculated parameters of total glucose + fructose (A3) and sugar
weetness (A4). These groupings of descriptors are in general agree-
ent with the linear regression analysis (Fig. 1 and Table 3), but of

ourse the multi-block ComDim data are presented on a single map,
ather than calculated individually as in linear regression.

Glucose (A1) is not part of the Sweetness region, but perhaps this
s not surprising, given its zero to low concentrations in the wines
xamined here (Table 1). Ethanol (A7), which is sometimes consid-
red to show sweetness [25], is not part of the Sweetness region.
he ethanol concentration in the 16 wines is essentially invariant
Table 1), so it is reasonable to expect that it would not have any

ommonality with the common dimensions identified here.

The inclusion of glycerol (A10) in the Sweetness region is intrigu-
ng. Glycerol is known to affect various sensory attributes including
weetness, acidity, mouthfeel and viscosity. However, the actual
77 0.0194 0.190
08 0.0448 0.677

sponse: see text for details of calculation.

concentration at which these attributes are expressed is the sub-
ject of considerable debate. Gawel et al. [26] found varying taster
responses to different concentrations of glycerol. Noble and Bursick
[27] suggested that additions of 26 g L−1 of glycerol were necessary
before an increase in viscosity could be perceived, while Nurgel and
Pickering [28] claimed a perceived increase in viscosity could be
detected as the glycerol concentration increased from 10 to 25 g L−1

in a model wine. Intriguingly, the glycerol concentration in the wine
studied here is much less than that for the levels examined by oth-
ers. Clarification of these conflicting reports is outside the scope of
this present work, but the ComDim analysis used here may well
have the capacity to provide a better interpretation of published
data and lead the way to a better understanding of the sensory
aspects of glycerol in wine.

Two opposing relations of Acidity are identified in the ComDim
variables plot for CD1 and CD2 (Fig. 2). One zone in the positive
CD2 direction contains the sensory attribute ACIDITY (S14) and the
analytical parameter titratable acidity (A5). Titratable acidity is a
measure of the amount of acid present in the wine, so the com-
Fig. 2. Scatter plot of scores for analytical variables (stars) and sensory variables (cir-
cles) onto Common Dimension 2 vs. Common Dimension 1, calculated by ComDim.
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[9] An-Kuo Meng, I.H. Suffet, A procedure for correlation of chemical and sen-
ig. 3. Scatter plot of scores for analytical variables (stars) and sensory variables (cir-
les) onto Common Dimension 3 vs. Common Dimension 2, calculated by ComDim.

ts negative relationship with acid concentration, as noted above
ith the linear regression analysis. The placement of malic acid is
nexpected, but also in accord with the linear regression analysis
Table 3 and Fig. S2).

Malic acid is sometimes regarded as ‘green’, while tartaric acid
s considered to be ‘hard’ [29]. The relative acid taste of these two
cids in white wine is still the subject of debate. Early work by
merine et al. [30] on white wine showed that at the same titrat-
ble acidity, malic acid is perceived as more acidic, reflected as an
ncrease in sourness. Relative sourness was also found to be higher
or malic acid when the wines were adjusted to the same pH [30].
oble et al. [31] focused on a comparison of sourness of organic acid
nions at equal pH and equal titratable acidity in binary acid solu-
ions. Only succinic acid (a minor component of wine) was found
o be more sour than malic acid. Lugaz et al. [32] in a study of the
ime-intensity effects of organic acids on saliva suggested that it
s the hydrogen ion that is the stimulus and not the neutral acid

olecule or its monoanion.
In the Hunter Valley Semillon wines used here, the pH is gen-

rally around 3.2 or less and the malic acid concentration is only a
mall component of the titratable acidity (Table 1). The main acid is
artaric acid, a stronger acid than malic acid (pKa1 (tartaric): 2.93;
Ka1 (malic): 3.46), suggesting that the hydrogen ion may well be
he dominating factor in determining sensory acidity. Clearly more
ork is required, and the multi-block analysis approach used here
ay well provide greater insight into the competing effects than

as been possible in earlier studies.
The sensory aromas fall into two categories: one group (labelled

romas in Fig. 2) consists of HAY/STRAW (S5), ORANGE MAR-
ALADE (S6), HONEY (S7), TOAST (S8) and KEROSENE (S12). There

s no commonality between these sensory attributes and the ana-
ytical measurements used here. These same attributes are in
pposition to the sweetness aroma attributes of LEMON/LIME (S1),
LORAL (S2), GRAPEFRUIT (S3), PINEAPPLE (S4), LYCHEE (S11) and
ONFECTIONARY (S13) (Fig. 2). LEMON/LIME (S1), GRAPEFRUIT
S3) and PINEAPPLE (S4) are orthogonal to the acidity parameters
Fig. 2), despite the strong association of acidity with the taste of
hese fruits.
Interestingly, the sensory attribute ASPARAGUS (S10) is mid-
ay between the Sweetness region and the Acidity region that is

n opposition to titratable acidity (Fig. 2). There is no proximity
etween ORANGE MARMALADE (S6) and volatile acidity (A9) in

[
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the CD1–CD2 plot, despite the correlation observed using linear
regression (Table 3 and Fig. S4). This confirms the weakness of that
correlation.

The CD2–CD3 plot (Fig. 3) confirms the strong connection among
the analytical sweetness parameters A2, A3, A4. The unexpected
proximity of pH (A6), malic acid (A8) and volatile acidity (A9) with
titratable acidity (A5) and ACIDITY (S14) in opposition, is also con-
firmed in this plot. HONEY (S7) and SWEETNESS (S15) are this time
in the same quadrant as glucose (A1).

4. Conclusion

In summary, the multi-block analysis, ComDim, has provided
considerable insight into the connections between analytical data
and sensory descriptors for Hunter Valley Semillon. Zones for
Sweetness and Acidity describing the connections between vari-
ous analytical and sensory parameters were readily identified. The
orthogonal relationship between the analytical measurement for
malic acid and the sensory score for acidity opens up the possibil-
ity of further research on the factors contributing to acid taste. One
group of aroma sensory attributes did not show any connection
with the analytical data used in this analysis. A GC–MS study of the
aroma compounds in these Semillon wines is presently underway.
The future inclusion of these data in the multi-block analysis may
provide information on connections in addition to those already
identified.
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